Clinical question posed by this trial: In patients with long-term indication for oral anticoagulant (OAC) and require percutaneous coronary intervention, how does double therapy (OAC + clopidogrel) compare with triple therapy (OAC + clopidogrel + ASA) in terms of bleeding and thrombotic events?

- Many patients with A. Fib, mechanical or bio-prosthetic heart valves or venous thrombosis require long-term treatment with OAC (eg. warfarin)
- Dual antiplatelet therapy (DAPT) with aspirin plus a P2Y₁₂ inhibitor is the standard of care following stent implantation
- Data with bare-metal stents (BMS) have demonstrated superiority of DAPT to warfarin plus aspirin¹
- Observational studies suggest that in patients with A. Fib after stent placement, triple therapy reduces CV events compared to DAPT but at the expense of more bleeds
- Triple therapy also increases the risk of major bleeding events without significantly reducing thromboembolic events compared to single antiplatelet therapy + warfarin 2,3

Methodology					
Study design	Open label, MC, RCT x 1 year				
Sequence generation	Appropriate (computer-generated) • Stratified by centre ("blocked randomization per centre")				
Allocation concealment	Adequate (sequentially numbered sealed envelopes and allocated by secretarial staff of the research department of each centre)				
Blinding	 Open label (no placebo in double therapy group) All events adjudicated by clinical events committee unaware of treatment allocations 				
Loss to follow-up	98.3% follow up (1 person lost to follow up in each group)				
Population analyzed	Modified intention-to-treat (included all who received study drugs, not all randomized patients)				
Intervention	 OAC (INR = 2.0) + clopidogrel 75mg po daily OAC (INR = 2.0) + clopidogrel 75mg po daily + ASA 80-100mg po daily 				
Outcomes	 Any bleeding (TIMI, GUSTO, BARC) Composite of death, MI, stroke, target vessel revascularization, stent thrombosis Death MI Stroke Target vessel revascularization Stent thrombosis 				
Funding	 Not industry funded Antonius Ziekenhuis Foundation Strect Foundation 				

Participants Setting 15 centres (Belgium and Netherlands) Inclusion • 18-80 years old criteria · Indication for long-term OAC • Severe coronary lesion with indication for PCI Relevant · History of intracranial bleeding exclusion · Cardiogenic shock criteria · Contraindication to study drugs • Peptic ulcer ≤ 6 months • Thrombocytopenia (< 50 x 109/L) • Major bleeding ≤ 12 months Pregnancy Study size • 573 patients randomized o 563 patients included in ITT analysis "Average" • Male 77-82% patient • Age ~70 years old Comorbidities o Diabetes 25% o HTN 70% o Hypercholesterolemia 70% o History of MI 35% o History of stroke 18% o History of heart failure 25% o History of renal failure 18% o History of PCI 35% o History of GI bleed 5% o Positive FmHx 42% · Indication for OAC Afib/flutter 70% Mechanical valve 10% Other 20%

PPI use 35% CHADS score

· Meds on admission

- 2 (32 vs 26%)
- 3 (32 vs 36 %) 4 (16 vs 15%)
- >5 (1 vs 2%)
- Stent type
 - BMS (32 vs 30%)
 - DES (65 vs 64%)
 - BMS and DES (1 vs 4%)

Beta blocker 78% ACEI/ARB 67% Statin 70 vs 80%

- Radial access (26%) and femoral access (74%)
- LAD (41%) and RCA (27%)

Clinicallyrelevant baseline differences (DT vs TT)

• Smoker (22 vs 15%)

		Results		
Outcomes	Double therapy (n=279)	Triple therapy (n-284)	Hazard ratio	Absolute risk reduction
All-cause mortality	7 (2.5%)	18 (6.3%)	0.39 (0.16-0.93)	3.8%
Composite	31 (11.1%)	50 (17.6%)	0.60 (0.38-0.94)	6.5%
MI	9 (3.2%)	13 (4.6%)	0.69 (0.29-1.6)	1.4%
Stroke	3 (1.1%)	8 (2.8%)	0.37 (0.10-1.4)	5%
Stent thrombosis	4 (1.4%)	9 (3.2%)	0.44 (0.14-1.44)	1.8%
Any bleeding event	54 (19.4%)	126 (44.4%)	0.36 (0.26-0.50)	25%
Major TIMI Bleed	9 (3.2%)	16 (5.6%)	0.56 (0.25-1.27)	2.4%
Severe GUSTO Bleed	4 (1.4%)	10 (3.5%)	0.40 (0.12-1.27)	2.1%
Any transfusions	11 (3.9)	27 (9.5%)	0.39 (0.17-0.84)	5.6%

Major Limitations

Design

- Open label design leading to potential for bias
- No information on TTR for OAC (extrapolated from RELY trial where TTR was ~70% and patients were being monitored by specialized thrombosis service)

Results

• ASA continued in only 66% of triple therapy group.

Generalizability

- Done in Europe
- Excluded patients with ICH and recent major bleeding
- Can't apply this data directly to patients on new oral anticoagulants (NOACs)
 - In ATLAS ACS 2-TIMI 51,⁴ patients without an indication for oral anticoagulation and with a low risk of bleeding, had a reduced risk of death and CV events but an increase in major bleed with *tiny* doses of rivaroxaban (2.5 mg BID)
 - o Trials of other oral anticoagulants are not as positive.5

Conclusions:

- Triple therapy significantly increases the risk of bleeding compared to double therapy of OAC + clopidogrel
- This study showed a mortality benefit with double therapy compared to triple therapy
 - Mortality was a secondary outcome, so the result is less reliable
 - This data can't be applied to patients on NOACs

¹ Cardiology 2005, 104:101-6

² Chest. 2011;139:260-70.

³ Circulation. 2012;126:1185-1193

⁴ NEIM. 2012:366:9-19.

⁵ Arch Intern Med. 2012;172:1537-45.